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Organ printing: from bioprinter to organ biofabrication line
Vladimir Mironov1, Vladimir Kasyanov2 and Roger R Markwald1
Organ printing, or the layer by layer additive robotic

biofabrication of functional three-dimensional tissue and organ

constructs using self-assembling tissue spheroid building

blocks, is a rapidly emerging technology that promises to

transform tissue engineering into a commercially successful

biomedical industry. It is increasingly obvious that similar well-

established industries implement automated robotic systems

on the path to commercial translation and economic success.

The use of robotic bioprinters alone however is not sufficient for

the development of large industrial scale organ biofabrication.

The design and development of a fully integrated organ

biofabrication line is imperative for the commercial translation

of organ printing technology. This paper presents recent

progress and challenges in the development of the essential

components of an organ biofabrication line.
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Introduction
Since its inception [1��] the concept of organ printing

using robotic bioprinters for the layer-by-layer additive

biofabrication of functional 3D tissues and organ con-

structs using self-assembling tissue spheroids has under-

gone progressive development [2,3,4��,5,6] and gradually

gained recognition as a reasonable bottom-up solid scaf-

fold-free alternative to the classic top-down or solid

scaffold-based approach to tissue engineering [7]. As

Dr. David Williams stated in recent influential review:

‘‘There is obviously some way to go before such a paradigm
[. . .directed tissue self-assembly. . .] could be translated into a
practical reality, but many steps have been taken’’ [8]. The

report on the 4th International Bioprinting and Biofabri-

cation Conference (2009) that took place in Bordeaux,

France, stated that ‘bioprinting is coming of age’ [9]. An
www.sciencedirect.com 
increasing number of papers and reviews, publication of

the first books [10], the rapid development of new bio-

printing research centers around the world, creation of the

new Biofabrication journal and International Society for

Biofabrication (2010) and, most importantly, the devel-

opment of commercially available bioprinters are all

important progress milestones.

The potential competitive advantage with the use of self-

assembling tissue spheroids for organ printing has been

recently reviewed [3,4��,6]. It has been suggested that the

bottom-up solid scaffold-free approach can enhance the

development of tissue engineering technology by

enabling the automated and robotic industrial scale organ

biofabrication [4��]. History of the automobile industry

and the emergence of microelectronic industry have

taught us that an automated robotic approach is required

for the successful development of new commercially

profitable industries. The combination of computer-aided

robotics and tissue engineering will not only enable tissue

and organ bioassembly at large industrial scale, but will

also provide the necessary level of flexibility for patient

specific, customized organ biofabrication [2,4��,5,11–14].

It is become increasingly obvious that, from a systems

engineering point of view, it will take more then just

bioprinters to biofabricate complex human tissues and

organs. Indications suggest that the development of series

of integrated automated robotic tools, or an organ bio-

fabrication line (OBL) is required. Components of the

OBL must include a clinical cell sorter, stem cell propa-

gation bioreactor, cell differentiator, tissue spheroid bio-

fabricator (Figure 1), tissue spheroids encapsulator,

robotic bioprinter, and perfusion bioreactor. Certain com-

ponents of the OBL, such as clinical cell sorters (for

example, Celution, Cytori Therapeutics, USA), stem cells

propagation bioreactors (for example, Aastrom Bios-

ciences, USA), cell and tissue encapsulators (for example,

Nisco Engineering Inc., Switzerland), and robotic bio-

printers (for example, Envisiontech, Germany and BioAs-

sembly Tool, Sciperio/nScript, USA) (Figure 2) are

already commercially available whereas other com-

ponents are still under development. Ideally, all com-

ponents of an OBL must be compatible and able to

integrate. In this review we will present progress and

discuss the related challenges in the development of the

essential components of OBL, such as tissue spheroid

biofabricators, robotic bioprinters and bioreactors.

Design principles of organ biofabrication line
The OBL must be developed using carefully formulated

engineering principles. For example, the engineering
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A scalable biofabricator for the production of tissue spheroids.

(a) Computer-aided design of the 96 multiwell micromolding device.

(b) Scheme of the process for fabricating micromolded recessions in agarose hydrogel.

(c) Scheme showing micromolded recessions in agarose hydrogel.

(d) Scheme demonstrating a cell suspension in micromolded recessions in agarose hydrogel.

(e) Scheme demonstrating tissue spheroid fabrication in micromolded recessions in agarose hydrogel.

(f) Empty micromolded recessions in non-adhesive agarose hydrogel.

(g) Gravity forced sedimentation of cells suspended in micromolded recessions in non-adhesive agarose hydrogel.

(h) Tissue spheroid formation in micromolded recessions in non-adhesive agarose hydrogel.
principles in synthetic biology include standardization,

decoupling and abstraction [15,16]. The standardization

of parts, or building blocks, is a necessary engineering

requirement for any large-scale assembly process. The

decoupling of design from fabrication is a standard

approach because building without design is engineering

nonsense. Finally, abstraction allows for reduction of the

entire project into series of small tasks without the loss of

an integrated comprehensive vision of entire project. In

the case of engineering an organ biofabrication line, we

believe it is logical to introduce the following basic design

principles. The first principle – do not re-invent wheel. It

is important to optimize the potential of existing tech-

nologies and integrate them before trying to develop

something entirely new. The second principle is to never

forget that you are dealing with living tissue – this is

probably the most important engineering restraint. The

third principle is to maximize the automation of all OBL

processes and operations because scalability cannot be

achieved without automation. The fourth principle is that

all components must be compatible and able to seam-

lessly integrate together. Finally, the fifth principle is that

the whole OBL must be automatically controlled and
Current Opinion in Biotechnology 2011, 22:667–673 
every step be non-destructively biomonitored in real

time, using sophisticated ‘built in’ sensors and an auto-

mated system of quality control. The implementation of

an automated system of quality control is key for success

and regulatory agency approval.

Tissue spheroids biofabricator
The development of scalable methods to biofabricate

uniformly sized tissue spheroids is essential for enabling

the bioprinting of large tissue and organ constructs

because each require millions of tissue spheroids [4��].
The majority of existing methods of tissue spheroid

biofabrication are not scalable [17]. For example, it would

take 100 Petri dishes to generate 5 thousands tissue

spheroids using the hanging drop method of tissue spher-

oid fabrication [18–20,21�,22–25]. Recently, a novel ele-

gant method was introduced whereby tissue spheroids

were biofabricated using micromolded non-adhesive

hydrogel (agarose) [26–28,29�,30]. These densely placed

micromolded recessions with rounded bottoms in hydro-

gel allowed for the biofabrication of uniformly sized tissue

spheroids [31]. The use of this approach in combination

with a robotic dispenser (for example, ‘EpMotion-5070’,
www.sciencedirect.com
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Figure 2
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Design of robotic bioprinters.

(a) Fishman automated dispenser.

(b) Nordson aseptic valve sprayer.

(c) Design of a robotic bioprinter (N – two Nordson aseptic valve sprayers for spraying thrombin and fibrinogen, and the fabrication sequential layers of

fibrin hydrogel; F – Fishman robotic dispenser for punching tissue spheroids into sequentially sprayed layers of fibrin hydrogel. Both Nordson sprayers

and the Fishman automated dispenser are fixed on an XYZ-axis robot).

(d) Envisiontech commercial bioprinter.

(e) Sciperio/nScript commercial bioprinter.
Eppendorf) increases the productivity of tissue spheroids

biofabrication for production of up to five thousand tissue

spheroids of standard size on one 96 well multiwall plate

(Figure 1). Similar approaches have also been developed

using increasingly sophisticated microfabrication tech-

niques such as lithography [32–36]. However, the flat

bottom of the microfabricated microwells is an obvious

disadvantage because a round shaped bottom is essential

for the rapid fabrication of tissue spheroid into the desired

ball-like shape. The use of novel stimuli-sensitive bio-

materials unlocks a unique opportunity for the automati-

cally controlled retrieval of tissue spheroids by providing

the appropriate stimulus for the specially designed hydro-

gel [37�]. Recent advances in digital (droplet-based)

microfluidics offered a new exciting perspective to bio-

fabricate thousand tissue spheroids with complex internal

structure and composition in seconds using a relatively

cheap and elegantly designed cascade droplet generator

[38]. Thus, the development of scalable robotic tissue

spheroid biofabricators for the automated biofabrication

of uniform sized tissue spheroids is a feasible and achiev-

able goal. The storage of biofabricated tissue spheroids

and the prevention of undesirable fusion are other chal-

lenges. One possible engineering approach is to integrate

tissue spheroid biofabricators with robotic bioprinters
www.sciencedirect.com 
using microfluidic devices. However, from a systems

engineering viewpoint, the increasing complexity of bio-

printers and the combination of two or more functional-

ities in a single device can increase the chance of failure

and associated downtime.

Robotic bioprinters
Bioprinters are a key element of organ printing tech-

nology [2,4��]. The emergence of commercially avail-

able bioprinters (Figure 2) is probably the most

remarkable development of the past decade. The explo-

sive growth of different variants of bioprinting technol-

ogy resembles the early development phase of rapid

prototyping technology 10–15 years ago, when many

completing technologies were developed but not all

of them successfully commercialized. Robotic bioprin-

ters for the precise dispensation of tissue spheroids

include three essential elements: X–Y–Z axis robotic

precision position system, automated biomaterial

dispensers and computer-based software enabled oper-

ational control. Tissue spheroid printing of satisfactory

resolution is already achievable by robotic deposition

[2,4��,5,6,39]. Achieving the desired level of cell

density, effective vascularization and accelerated tissue

maturation are remaining challenges [3,5,6]. It has been
Current Opinion in Biotechnology 2011, 22:667–673
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shown that adequate cell density can be achieved by

dielectrophoresis in combination with stereolithography

[40]. This investigation revealed that cell density

increased progressively, even in an initially low-density

printed cell-hydrogel construct, as the result of either

post-printed cell proliferation or the elimination of a

sacrificial biodegradable hydrogel [41–43]. The initial

high cell density can be achieved immediately after

bioprinting using self-assembling tissue spheroids

[4��,5,6,39,44��] or continuous self-assembling tissue

rods or longitudinal pellets [45]. There has also been

certain progress in solving the problem of vasculariza-

tion of thick 3D bioprinted tissue and organ constructs

[6]. Branched vascular tissue constructs have been bio-

printed using continuous rod dispensation [45��]. Vas-

cular tubes have also been bioassembled from vascular

tissue spheroids [2,4��,5,6,21�,39,46]. In other develop-

ments, new in vitro assays have been developed for the

systematic screening of potential chemical maturogenic

factors necessary for accelerated tissue maturation [47].

It has also been demonstrated that mechanical con-

ditioning can improve vascular tissue maturation

[21�]. Further progress in bioprinter development must

focus on improving nozzle and cartridge design, the

development of more flexible functionality and the

design of collectors or bioreactor for bioprinted con-

structs. In this context, recently reports have found

nozzle-free bioprinting to be an innovative engineering

concept [48�]. Another interesting development is

magnetic force driven tissue engineering with tissue

spheroids labeled with magnetic nanoparticles, which

could lead to the development of a magnetic bioprinter
Figure 3

(a) (b)

(d) (e)

Design of an irrigating triple perfusion bioreactor.

(a) Design of the triple perfusion bioreactor chamber.

(b) Design for the placement of temporally removable porous tubes into the

extra-construct perfusion circuit (1).

(c) Design of the second circuit (2) based on the use of temporally removabl

outlet of third circuit (3) for intravascular perfusion.

(d) Scheme demonstrating the fluid flow pattern between temporally remova

(e) Scheme demonstrating a longitudinal section through the wall of tempor

(f) Computer-aided design of a temporally removable porous tube for the tr
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[17,49,50]. Thus, bioprinting technology has matured

enough for the bioprinting of large thick vascularized

tissue and organ constructs.

Bioreactors for organ printing
Bioprinting per se is not sufficient for the creation func-

tional tissue or organ constructs immediately suitable for

implantation. It takes time for bioprinted tissue spheroids

to fuse and bioprinted tissue to assemble, compact,

remodel and mature into functional tissue constructs.

Post-processing is probably the most essentially crucial

step in organ printing technology, and effective post-

processing or accelerated tissue maturation will require

the development of new types of bioreactors, more effi-

cient accelerated tissue maturation technologies as well as

methods of non-invasive and non-destructive biomoni-

toring. The conceptual design of novel irrigation dripping

tripled perfusion bioreactors with temporally removable

porous minitubes suitable for bioprinting has already

been developed [3,4��] (Figure 3). The design is a triple

perfusion bioreactor because it has three circuits: one for

maintaining a wet environment around the bioprinted

construct, the second for media perfusion through an

intraorgan branched vascular tree, and the third and most

essential circuit, for temporal perfusion. The last type of

perfusion is undertaken using extremely strong, thin,

porous, non-biodegradable, removable minitubes that

serve as temporal supports and artificial microchannels.

The main goal of the proposed dripping irrigation circuit

system is to ‘buy’ time until the ‘built in’ intra-organ

branched vascular system will mature sufficiently for the

initiation of intravascular perfusion. Moreover, this
1

2

3
(c)

f
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 triple perfusion bioreactor chamber. The inlet and outlet for the

e porous tubes for interstitial intra-construct perfusion, and the inlet and

ble porous tubes in the triple perfusion bioreactor.

ally removable porous tube and the flow of fluid through its porous wall.

iple perfusion bioreactor.
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Figure 4
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Essential steps in organ printing technology and an organ biofabrication line.

(a) Celution – clinical sell sorter for the scalable isolation of autologous adipose tissue derived adult stem cells (Cytori Therapeutics, USA).

(b) Bioreactor for the scalable propagation of stem cells (Aastrom Bioscience, USA).

(c) EpMotion-5070 – robot for the automated scalable biofabrication of uniformly sized tissue spheroids (Eppendorf, Germany).

(d) Bioasembly Tool – robotic bioprinter (Sciperio/nScript, USA).

(e) LifePort – Perfusion apparatus (Organ Recovery System, USA).
temporal perfusion system can be used for the delivery

cells, soluble extracellular matrix molecules and maturo-

gens. The rational design behind such a bioreactor,

especially the level of porosity and distance between

minitubes, must be based on systematic mathematical

modeling and computer simulation of interstitial flow.

The identification of proper materials and coatings of

these minitubes, and the optimal way to retrieve the inert

minitubes without severe tissue injury are other import-

ant engineering challenges.

Conclusion
The only economic and reasonable way to commercialize

organ-printing technology is to systematically employ

scalable automated robotic technology and to build an

integrated organ biofabrication line. It is not sufficient to

develop just one robotic device – a bioprinter. The

biofabrication of a human organ will require the devel-

opment of series of integrated automated robotic devices,

or an organ biofabrication line (Figure 4). The develop-

ment of such a production line is an important techno-

logical imperative and an exciting engineering challenge.

Certain components of the organ biofabrication line are

already commercially available, whereas others need

adaptation to organ printing technology, and some must
www.sciencedirect.com 
be entirely developed from new. The clinical cell sorter

(Celution, Cytori Therapeutics, USA) and bioreactor for

stem cell propagation (Aastrom Biosciences, USA) are

examples of commercially available components of the

future organ biofabrication line.

The progress in tissue spheroid biofabrication clearly

indicates that the development of a scalable automated

robotic tissue spheroid biofabricator is a feasible and

achievable goal. The recent explosion of interest to build

different types of laboratory bioprinters and the emer-

gence of commercial bioprinters also strongly suggests

that the design and fabrication of a robotic bioprinter

suitable for the automated and precise dispensation of

tissue spheroids is just a matter of time, proper invest-

ment and optimization. Finally, the design and fabrica-

tion of a perfusion bioreactor suitable for organ printing is

still a great challenge.

To guarantee the bioprinting of consistently high quality

products (failure is not an option in case of human organ

biofabrication), the whole OBL must be automatically

controlled and every bioassembly step must be non-

destructively biomonitored in real time by sophisticated

‘built in’ sensors and automated systems of quality
Current Opinion in Biotechnology 2011, 22:667–673
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control. It is logical to assume that close collaboration

between biologists and engineers, and use of mathemat-

ical modeling and computer simulation to predict tissue

biofabrication processes, will significantly enhance, opti-

mize and accelerate the OBL design process.
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